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Notes:

• Unless specified otherwise, all references are from Paolo Aluffi’s Algebra: Chapter Zero

• Symbols are conveniently recycled for each solution.

Q1 Let k Ď K be a separable, finite extension. Show that ΩK{k “ 0

Solution∗

To show that ΩK{k “ 0, we can show that the morphism d : K ÝÑ ΩK{k is trivial. The result will follow
since ΩK{k “ xd pαq : α P Ky. We establish both statements.

We start off with the following observation: for any derivation D : K ÝÑM and @α P K,

D pαnq “ nαn´1D pαq (1)

Proof. D
`

α2
˘

“ D pααq “ αD pαq`αD pαq “ 2αD pαq. Assume that D pαnq “ nαn´1D pαq holds for some

n. Then, D
`

αn`1
˘

“ D pααnq “ αD pαnq ` αnD pαq “ α
`

nαn´1D pαq
˘

` αnD pαq “ nαnD pαq ` αnD pαq
“ pn` 1qαD pαq
Recall the formal derivative

f pxq “
n
ÿ

i“0

aix
i ÞÝÑ f 1 pxq “

n
ÿ

i“1

iaix
i´1

satisfies Liebniz rule, hence p.q
1

: k rxs ÝÑ k rxs is a derivation without deception, where the domain is
treated as a natural k-algebra (courtesy of the canonical embedding k ãÑ k rxs) and the codomain is treated
as a k rxs-module (every ring is a module over itself).

Now, the (algebraic) extension k Ď K gives us, in particular, a ring homomorphism i : k ÝÑ K so we are
allowed to consider the evaluation map i : k rxs ÝÑ K which sends x to any α P K of choice. As an algebraic
extension in general @α P K, D minimal polynomial f pxq P k rxs such that f pαq “ 0. Since the extension
is, in particular, separable, f pxq must be separable so by Lemma VII.4.14, f 1 pxq “ 0. In particular,
f 1 pαq “ 0 since

i

˜

d
ÿ

i“0

bix
i

¸

“

d
ÿ

i“0

i pbiqα
i

defined using an injection i (Cf. Example III.2.3) for any polynomial b0 ` b1x` ...` bdx
d.

With this background in order, we now show that d is trivial. From f pαq “ 0, we have d pf pαqq “ 0
since the k-linear d is (also) a morphism of the underlying abelian groups. Focusing on the LHS, we have

d pf pαqq “ d

˜

n
ÿ

i“0

i paiqα
i

¸

“ d

˜

n
ÿ

i“0

aiα
i

¸

:
“

n
ÿ

i“0

aid
`

αi
˘ ;
“

n
ÿ

i“0

iaiα
i´1d pαq

“ d pαq
n
ÿ

i“0

iaiα
i´1 “ d pαq f 1 pαq

where : holds because we have k-linearity and ; holds because of Eq (1). Thus, we have d pαq f 1 pαq “ 0.
In particular, f 1 pαq “ 0 so we must have d pαq “ 0.

Showing ΩK{k “ xd pαq : α P Ky requires us to stare at the diagram

∗Solution taken from Example 10.26.G in Commutative Algebra by Hideyuki Matsumura
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K bk K K

J J{J2 “ ΩK{k

m

d

Here, m is the multiplication map ab b ÞÝÑ ab and J “ kerm. Since J is defined relative to m, and m
is defined relative to generators of K bR K, ΩK{k can be defined in terms of images of generators of K.

Q2 Can you drop the separability hypothesis in Q1?

Solution
The hypothesis of separability is used to come up with the minimal, separable polynomial f and the fact

f 1 pαq “ 0 coupled with d pαq f 1 pαq “ 0, we concluded that d pαq “ 0. Thus, if we were to not focus on
separability, we would want to preserve f 1 pαq “ 0 in order to surely arrive at d pαq “ 0. This fails in, e.g.,
when f pxq P k rxs is inseparable and irreducible, or in cases like f pxq “ xp ` 1 with char pkq “ p ą 0, so
let us focus our attention in a decent classification of fields we know of viz. char pkq “ 0 and char pkq “ 0.
In the former, the field is perfect and by Proposition VII.1.15, all irreducible polynomials are separable.
Hence to discard the notion of separability entirely, we need to restrict ourselves to the char pkq “ 0 case.
Even this case needs to be further refined since by Corollary VII.4.18, separability cannot fail if |k| ă 8.

Thus, if we were to drop the separability hypothesis, we would be left with an infinite field k with
char pkq “ 0. However, there are good chances that f 1 pxq “ 0 for a non-zero polynomial f so there is no
guarantee that d pαq “ 0. For example, consider f pxq “ xp´t P Fp ptq rxs, where Fp ptq is the field of rational

functions with coefficients in Z{pZ. The extension K “
Fpptqrxs
pfpxqq is not separable since xp´t “ px´ uq

p
where

u P K is a root of f pxq. Yet, f 1 pxq “ 0. In fact, since K “
@

1, u, u2, ..., up´1
D

(K is a Fp ptq vector space

of dimension p), d
`

ui
˘

“ iui´1d puq, and the fact that d puq is nontrivial, we are justified in saying that

ΩK{Fpptq “
@

d
`

ui
˘

: 0 ď i ă p
D

is non-trivial. Therefore, the hypothesis of separability is necessary.

Q3 Let k be a field with char pkq “ p ą 0, and let A be a k-algebra. Let D : A ÝÑ A be a derivation.
Show that Dp is a derivation.

Solution
To make life easy, let us assume that A is commutative, to have D paqD pbq “ D pbqD paq.
Using the base case D pabq “ aD pbq ` bD paq, for all n, the following can be easily verified:

Dpnq pabq “
n
ÿ

k“0

ˆ

n

k

˙

Dpn´kq paqDpkq pbq (2)

with the convention that Dp0q “ idA. We can, therefore, plug† n “ p in Eq (2) to give us

Dppq pabq “
p
ÿ

k“0

p!

k! pp´ kq!
Dpp´kq paqDpkq pbq (3)

Courtesy of the injection i : k ÝÑ A, the ring A per se has characteristic p. Since we are in characteristic
p, all coefficients in Eq p3q, except those with k “ 0 and k “ p, are multiples of p, hence yield zero. Thus,
Dppq pabq “ Dppq paqDp0q pbq `Dp0q paqDppq pbq “ bDp paq ` aDp pbq, making Dp a bona-fide derivation.

Q4 Assume the same hypothesis as Q3. Let σ : A ÝÑ A be the Frobenius homomorphism a ÞÝÑ ap.
Prove that there is an isomorphism ΩA{k – ΩA{A, where in the right-hand side A is considered as an
A-algebra via σ.

†Observe that any repeated application of D would still land us in A.
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Solution
Let M be any A-module and φ : k ÝÑ A be the map giving A a k-algebra structure. This and the given

information in the question summons the following commutative diagram:

A ΩA{A

k A M

k ΩA{k

σφ

σk

dk

dA

φ

The diamond on the left commutes simply because φ is a ring homomorphism: for any x P k, pφ ˝ σkq pxq “
φ pσk pxqq “ φ pxpq “ φ pxq

p
“ σ pφ pxqq “ pσ ˝ φq pxq, where σk pxq “ xp is the Frobenius homomorphism of

k. The two triangles on the right commute by construction of the Kähler Differentials. This observation is
enough to establish the required isomorphism via abstract nonsense.

To see this further, recall that the universal object
`

d,ΩA{k
˘

(respectively,
`

d,ΩA{A
˘

), is initial in the
coslice subcategory A{k-Alg (respectively, A{A-Alg). The prefix “sub” stems from the fact that the objects
are restricted to subobjects Derk pA,Mq Ă Homk pA,Mq (repectively, DerA pA,Mq Ă HomA pA,Mq) of the
respective coslice categories. So, to show that the Kähler differentials are isomorphic, we can show that they
are essentially derived from the same categories. Thus, we need to focus on the categories A-Alg and k-Alg.

Now, the category R-Alg for any ring R is, again, a coslice category R{Rng. In our case, we can
consider the category Rngp, consisting of rings of characteristic p as objects. Consider the identity functors
F ,G :Rngp ÝÑRngp and the natural transformation η : F  G. The latter is defined as follows: for φ P
HomRngp

pX,Y q, ηφ “ σX where σX : X ÝÑ X is the map x ÞÝÑ xp. This gives us the diagram in Defition
VIII.1.15:

FpXq FpY q

GpY q GpY q

Fpφq

ηX ηY

Gpφq

The diagram commutes by virtue of the fact that φ is a homomorphism of rings. Therefore, for our
purposes, the choice of R for R{Rngp is immaterial and the result follows.

A more direct way is as follows: we know that both
`

dA,ΩA{A
˘

and
`

dk,ΩA{k
˘

exist and are both
A-modules. Placing either instead of M in the commutative diagram in the start gives us morphisms
f : ΩA{A ÝÑ ΩA{k and g : ΩA{k ÝÑ ΩA{A.

ΩA{A ΩA{A

ΩA{k A ΩA{A

ΩA{k ΩA{k

f idΩA{A

dA

dk

dAdA

dk

dk

idk g

If we can show that fg “ idΩA{k
and gf “ idΩA{A

, we will be done. The universal property tells us that
fdA “ dk and gdk “ dA. Thus, fgdk “ dk and gfdA “ dA. Since dk and dA are unique, the result follows.

Q5 Assume R is a commutative ring and let R-Alg be the category of commutative R-algebras. Let A
be an R-algebra and M an A-module. For all a, a1 P A and m,m1 P M , define a product structure
pa,mq pa1,m1q ÞÝÑ paa1, am1 ` am1q on DA pMq “ A ‘M . Show that (a) DA pMq is an augmented
A-algebra; and (b) HomR-Alg{A pB,DA pMqq – HomB

`

ΩB{R, u˚M
˘

– HomA

`

AbB ΩB{R,M
˘
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Solution
(a) In order to show that DA pMq is an augmented A-algebra, we first need to show that DA pMq is an

A-algebra. For this, we need to show the existence of a ring homomorphism α : A ÝÑ DA pMq such that
α pAq is in the centre of DA pMq.

DA pMq is necessarily an A-module, as it is the coproduct of two A-modules (the R-algebra A is an
A-module). This means we have a homomorphism σD : A ÝÑ EndAb pDA pMqq given by σA ‘ σM where
σA : A ÝÑ EndAb pAq and σM : A ÝÑ EndAb pMq are, respectively, the A-module structures on A and M‡.

Now, note that DA pMq “ A‘M implies that the short exact sequence of A-modules

0 ÝÑ A
α
ÝÑ A‘M ÝÑM ÝÑ 0

splits. Thus, we have for ourselves at least a group homomorphism from A to DA pMq given by a ÞÝÑ pa, 0q.
To show that this is, in addition, a ring homomorphism, we first show that with the given product operation,
DA pMq is a ring with the obvious identity 1DApMq “ p1A, 0q and the distributive identities.
Proof. pa1,m1q rpa2,m2q ` pa3,m3qs “ pa1,m1q pa2 ` a3,m2 `m3q

“ pa1a2 ` a1a3, a1m2 ` a1m3 ` a2m1 ` a3m1q

“ pa1a2, a1m2 ` a2m1q ` pa1a3, a1m3 ` a3m1q

“ pa1,m1q pa2,m2q ` pa1,m1q pa3,m3q

Furthermore, p1A, 0q pa,mq “ p1Aa, 1Am` 0mq “ pa,mq and pa,mq p1A, 0q “ pa1A, 0m` 1Amq “ pa,mq.
However, the multiplicative binary operation on DA pMq is easily seen to be commutative as

pa1,m1q pa2,m2q “ pa1a2, a1m2 ` a2m1q “ pa2a1, a2m1 ` a1m2q “ pa2,m2q pa1,m1q

Thus, we are justified in verifying only one distributive identity and discarding the requirement that α pAq
be contained in the centre of DA pMq.

Clearly, 1A ÞÝÑ 1DApMq and α pabq “ pab, 0q “ pa, 0q pb, 0q “ α paqα pbq. Thus, DA pMq is a bona-fide
A-algebra.

Since the short exact sequence of A-modules

0 ÝÑ A
α
ÝÑ DA pMq ÝÑM ÝÑ 0

splits, by the Splitting Lemma, we have an A-module homomorphism π : DA pMq ÝÑ A such that π˝α “ idA.
Since our R-algebra A is, in fact, an A-algebra via the ring homomorphism π ˝ α “ idA : A ÝÑ A and so is
DA pMq, we can view our A-module homomorphisms α and π as an A-algebra homomorphism.

(b) Let us first take care of the two terms on the right. HomB

`

ΩB{R, u˚M
˘

is easily seen to be isomorphic

to HomA

`

AbB ΩB{R,M
˘

by Proposition VII.3.6. This isomorphism follows since the functor u˚ : A-
ModÝÑ B-Mod is right-adjoint to the functor bB A : B-ModÝÑ A-Mod. This opposition in the tensor
can easily be reconciled: ΩB{R bB A – A bB ΩB{R as B-modules by construction (Cf. §VII.2.1), where

the B-module A exists since we have B
u
ÝÑ A

σA
ÝÑ EndAb pAq; and by Exercise VII.3.9, ΩB{R bB A –

A bB ΩB{R as A-modules. We, therefore, have the privilege of concluding that HomB

`

ΩB{R, u˚M
˘

–

HomA

`

AbB ΩB{R,M
˘

.

To show the HomB

`

ΩB{R, u˚M
˘

– HomR-Alg{A pB,DA pMqq, we show a correspondence of morphisms
in each hom-set and the isomorphism will follow from abstract nonsense. Consider the following diagram:

R A

ΩB{R B DApMq

u˚pMq M

D

d

D̄

u

p

π

u˚

‡In fact, σA paq “ λa, where λa : A ÝÑ A is a ring homomorphism given by λa pxq “ ax, is an embedding by Proposition
III.2.7. This notation is carried on for Q8.

4



Given anyD P HomB

`

ΩB{R, u˚ pMq
˘

, we can find anR-linear function (a derivation)D P HomR pB, u˚ pMqq

and using this, we can form u ‘ D
˚
P HomR-Alg{A pB,DA pMqq. To qualify the latter, we observe that

π ˝
´

u‘D
˚
¯

“ u, where D
˚
P HomA pB,Mq holds by definition of extension of scalars (here, B is treated

as an A-module via B bB A). Conversely, given any f P HomR-Alg{A pB,DA pMqq, by axioms of a cat-

egory, we can form D “ u˚ ˝ p ˝ f P HomR pB, u˚ pMqq. If D is a derivation, we will have found our
D P HomB

`

ΩB{R, u˚M
˘

.

Q6 Same hypothesis as Q4.

• For a P A, consider
C : a ÞÝÑ ap´1da

Show that C gives a derivation
C : A ÝÑ σ˚ΩA{k

• Verify that a, b P A :

C pa` bq ´ C paq ´ C pbq “ d
p´1
ÿ

i“1

1

p

ˆ

p

i

˙

aibp´i (4)

• Show that C factors through H1
DR

`

σ˚ΩA{k
˘

• Obtain a homomorphism
C : ΩA{k ÝÑ σ˚H

1
DR pAq

• Show that C extends to a graded homomorphism

C : Ω‚A{k ÝÑ σ˚H
‚
DR pAq

Solution
For the A-algebra A, we need to show that the map C is A-linear and satisfies the Leibniz Rule§:

C pabq “ a ¨C pbq` b ¨C paq. Assuming that d refers to the map d : A ÝÑ ΩA{A (in which case the codomain
σ˚ΩA{k makes sense), we first show that the definition satisfies Leibniz Rule:

C pabq “ pabq
p´1

¨ d pabq (5)

“ ap´1bp´1 ¨ pa ¨ d pbqq ` ap´1bp´1 ¨ pb ¨ d paqq

“
`

ap´1bp´1a
˘

¨ d pbq `
`

ap´1bp´1b
˘

¨ d paq (6)

“
`

apbp´1
˘

¨ d pbq `
`

bpap´1
˘

¨ d paq

“ a ¨
`

bp´1 ¨ d pbq
˘

` b ¨
`

ap´1 ¨ d paq
˘

“ a ¨ C pbq ` b ¨ C paq

where equality in (5) follows from the fact that in an A-algebra, scalar multiplication is compatible with
the multiplication structure of the scalars. Next, to show A-linearity, we establish scalar multiplication first:

C pα ¨ aq “ pα ¨ aq
p´1

¨ d pα ¨ aq
♦
“ pα ¨ aq

p´1
¨ pα ¨ d paqq “

´

pαaq
p´1

α
¯

¨ d paq

“

´

pαaq
p´1

α
¯

¨ d paq “
`

αpap´1
˘

¨ d paq “ α ¨
`

ap´1 ¨ d paq
˘

“ α ¨ C paq

where ♦ follows since d is A-linear.
To show C pa` bq “ C paq`C pbq, observe that the d applied to the sum on the right of Eq (4) is defined

for scalars, hence is zero. This is because pa` bq
p
“ ap ` bp (because of Frobenius homomorphism) and we

have

0 “ pa` bq
p
´ ap ´ bp “

p
ÿ

i“0

ˆ

p

i

˙

`

ai
˘

bp´i ´ ap ´ bp “
p´1
ÿ

i“1

ˆ

p

i

˙

`

ai
˘

bp´i

§The scalar multiplication of a by scalar α is given by α ¨ a “ σ pαq a “ αpa.
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In fact,
d ppa` bq

p
q “ d pap ` bpq “ d papq ` d pbpq “

`

pap´1
˘

‚ d paq `
`

pbp´1
˘

‚ d pbq “ 0

We, therefore, simply show the equality in Eq (4). For this, we resort to Liebniz Rule.

0 “ d ppa` bq
p
q “ d

´

pa` bq pa` bq
p´1

¯

“ pa` bq
p´1

‚ d pa` bq ` pa` bq ‚ d
´

pa` bq
p´1

¯

“ C pa` bq ` a ‚ d

˜

p´1
ÿ

i“0

ˆ

p´ 1

i

˙

`

ai
˘

bp´1´i

¸

` b ‚ d

˜

p´1
ÿ

i“0

ˆ

p´ 1

i

˙

`

ai
˘

bp´1´i

¸

“ C pa` bq ` a ‚ d

˜

p
ÿ

i“0

ˆ

p

i

˙

`

ai
˘

bp´1´i

¸

´ a ‚ d papq ` b ‚ d

˜

p
ÿ

i“1

ˆ

p

i

˙

`

ai
˘

bp´i

¸

´ b ‚ d pbpq

“ C pa` bq ´ d

˜

p´1
ÿ

i“0

ˆ

p´ 1

i

˙

`

ai
˘

bp´i

¸

´ ap´1 ‚ d paq ´ bp´1 ‚ d pbq

“ C pa` bq ´ d

˜

p´1
ÿ

i“0

ˆ

p´ 1

i

˙

`

ai
˘

bp´i

¸

´ C paq ´ C pbq

We now have the following diagram:

ΩA{A

A σ˚ΩA{k
À

ně0 σ˚ΩnA{k

ΩA{k

C

dk

dA

Q8 Let π : B ÝÑ A be a surjective homomorphism of commutative R-algebras. Let M “ kerπ and
consider the short exact sequence

0 ÝÑM ÝÑ B ÝÑ A ÝÑ 0 (7)

Show that (a) if M2 “ 0, then M is an A-module and (b) if the underlying sequence of R-modules in
p7q splits, under what condition is B – DA pMq as R-algebras, where DA pMq is as in (Q5).

Solution
(a) We are given the following situation:

EndAbpMq EndAbpBq EndAbpAq

0 M B A 0i π

σB
σM

σA

The ideal M is a B-module and the module structure is given by σM where σM pbq “ λb where λb pxq “ bx
is the multiplication operation, making B a natural B-module. Similarly, σA paq “ λa. The composition
σA ˝ π gives the abelian group A a B-module structure. This restriction of scalars makes π˚ pAq (effectively,
A) a B-module, whence the short exact sequence of B-modules given in the question.
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Thus, to show that M is an A-module, we would need a well-defined function σ : A ÝÑEndAb pMq, which
we propose to be σ paq “ σMπ

´1 paq where π´1 paq “ b`M . This, we establish.
Proof. a1 “ a2

ùñ π´1 pa1q “ π´1 pa2q

ùñ b1 `M “ b2 `M
ùñ σM pb1 `Mq “ σM pb2 `Mq
ùñ σM pb1q ` σM pMq “ σM pb2q ` σM pMq
ùñ λb1 ` λM “ λb2 ` λM .
We also show that either one of these is an element in EndAb pMq. Observe that pλb1 ` λM q pMq “

b1M `M2 :
“ b1M

::
“M where : follows since M2 “ 0 and :: follows since M is an ideal.

In fact, : tells us that λM is the trivial map and hence the additive identity in EndAb pMq so we may
very well have σ paq “ λb where π pbq “ a. With this observation, verification of fact that σ pa1 ` a2q “

σ pa1q ` σ pa2q and σ pa1a2q “ σ pa1qσ pa2q and σ p1Aq “ λ1B
“ idB is a matter of routine

A more “frog” approach, as Freeman Dyson would say, would be to define the action ¨ : AˆM ÝÑM by
¨ pa,mq “ a ¨m “ π´1 paqm (because of commutativity of B, we can simply focus on one-side). This defines
an A-module structure on M .
Proof. Since π´1 paq “ b ` M , we have π´1 paqm “ pb`Mqm “ bm ` Mm. Because M is an ideal
bm PM . Since M2 “ 0, we have Mm “ 0 and so, the function is well-defined. Then, the following are easy
consequences:

i) pa1 ` a2q¨m “ π´1 pa1 ` a2qm “ pb1 ` b2 `Mqm “ pb1 `M ` b2 `Mqm “ pb1 `Mqm`pb2 `Mqm “

a1 ¨m` a2 ¨m
ii) a ¨ pm1 `m2q “ pb`Mq pm1 `m2q “ pb`Mqm1 ` pb`Mqm2 “ a ¨m1 ` a ¨m2

iii) pa1a2q ¨ m “ π´1 pa1a2qm “ pb1b2 `Mqm “ ppb1 `Mq pb2 `Mqqm “ pb1 `Mq ppb2 `Mqmq “
pb1 `Mq pa2 ¨mq “ a1 ¨ pa2 ¨mq

iv) 1A ¨m “ π´1 p1Aqm “ p1B `Mqm “ m`Mm “ m
(b) We are only missing the multiplicative structure. For this to hold, the obvious route would be to ask

for exact sequence to be that for rings, but this is too much to ask for:

R

0 M B A 0

φB
φAφM

i π

Since π is a given morphism of R-algebras, we know that φA “ π ˝ φB , where φA and φB are the maps
which, respectively, give A and B their R-algebra structure. If we can show that φB “ i ˝ φM , then we
would have a short exact sequence of R-algebras. This requires R-algebra structure on M , which can only
be possible if M were a ring in the first place i.e., have the identity. This would make the map π trivial.

A weaker requirement would be to ask for M to be an A-module and this is accomplished via M2 “ 0.
By Q5, what this does for us is it allows us to view DA pMq as an (augmented) A-algebra and, by restriction
of scalars via φA˚, an R-algebra.

In another scenario, we could consider our final commutative diagram:

0 M B A 0

0 M D A 0

i

idM

π

idA

i1 π1

Here, i is the inclusion map of R-modules and π is the given morphism of R-algebras, which is, in
particular, a morphism of R-modules. For the bottom short-exact sequence of A-modules, i1 pmq “ p0,mq
and π1 pa,mq “ a. Since DA pMq is canonically an R-module, so given an R-linear function f : B ÝÑ D, we
would have B – D as R-modules, by Exercise III.7.11. Since both are, in addition rings, the existence of
f gives us another condition.
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